46 research outputs found

    Identifying causal gateways and mediators in complex spatio-temporal systems

    Get PDF
    J.R. received support by the German National Academic Foundation (Studienstiftung), a Humboldt University Postdoctoral Fellowship, and the German Federal Ministry of Science and Education (Young Investigators Group CoSy-CC2, grant no. 01LN1306A). J.F.D. thanks the Stordalen Foundation and BMBF (project GLUES) for financial support. D.H. has been funded by grant ERC-CZ CORES LL-1201 of the Czech Ministry of Education. M.P. and N.J. received funding from the Czech Science Foundation project No. P303-14-02634S and from the Czech Ministry of Education, Youth and Sports, project No. DAAD-15-30. J.H. was supported by the Czech Science Foundation project GA13-23940S and Czech Health Research Council project NV15-29835A. We thank Mary Lindsey from the National Oceanic and Atmospheric Administration for her kind help with Fig. 4e. NCEP Reanalysis data provided by NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their web site at http://www.esrl.noaa.gov/psd/.Peer reviewedPublisher PD

    Transient simulation of the last glacial inception. Part II: sensitivity and feedback analysis

    Get PDF
    Abstract The sensitivity of the last glacial-inception (around 115 kyr BP, 115,000 years before present) to different feedback mechanisms has been analysed by using the Earth system model of intermediate complexity CLIMBER-2. CLIMBER-2 includes dynamic modules of the atmosphere, ocean, terrestrial biosphere and inland ice, the last of which was added recently by utilising the three-dimensonal polythermal ice-sheet model SICOPOLIS. We performed a set of transient experiments starting at the middle of the Eemiam interglacial and ran the model for 26,000 years with time-dependent orbital forcing and observed changes in atmospheric CO 2 concentration (CO 2 forcing). The role of vegetation and ocean feedback, CO 2 forcing, mineral dust, thermohaline circulation and orbital insolation were closely investigated. In our model, glacial inception, as a bifurcation in the climate system, appears in nearly all sensitivity runs including a run with constant atmospheric CO 2 concentration of 280 ppmv, a typical interglacial value, and simulations with prescribed present-day sea-surface temperatures or vegetation cover-although the rate of the growth of ice-sheets growth is smaller than in the case of the fully interactive model. Only if we run the fully interactive model with constant present-day insolation and apply present-day CO 2 forcing does no glacial inception appear at all. This implies that, within our model, the orbital forcing alone is sufficient to trigger the interglacial-glacial transition, while vegetation, ocean and atmospheric CO 2 concentration only provide additional, although important, positive feedbacks. In addition, we found that possible reorganisations of the thermohaline circulation influence the distribution of inland ice

    A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents

    Get PDF
    The recent overall Northern Hemisphere warming was accompanied by several severe northern continental winters, as for example, extremely cold winter 2005/2006 in Europe and northern Asia. Here we show that anomalous decrease of wintertime sea ice concentration in the Barents-Kara (B-K) Seas could bring about extreme cold events like winter 2005/2006. Our simulations with the ECHAM5 general circulation model demonstrate that lower-troposphere heating over the B-K Seas in the Eastern Arctic caused by the sea ice reduction may result in strong anti-cyclonic anomaly over the Polar Ocean and anomalous easterly advection over northern continents. This causes a continental-scale winter cooling reaching -1.5°C, with more than three times increased probability of cold winter extremes over large areas including Europe. Our results imply that several recent severe winters do not conflict the global warming picture but rather supplement it, being in qualitative agreement with the simulated large-scale atmospheric circulation realignment. Furthermore, our results suggest that high-latitude atmospheric circulation response to the B-K sea ice decrease is highly nonlinear and characterized by transition from anomalous cyclonic circulation to anticyclonic one and then again back to cyclonic type of circulation as the B-K sea ice concentration gradually reduces from 100% to ice free conditions. We present a conceptual model which may explain the nonlinear local atmospheric response in the B-K Seas region by counter play between convection over the surface heat source and baroclinic effect due to modified temperature gradients in the vicinity of the heating area

    Harmonic Progression in Bioinformatics and Recurrent Series in Inherited Biostructures

    Get PDF
    The article is devoted to the study of new approaches to the development of mathematical models in genetic biomechanics, which studies the structural relationships of the genetic coding system with genetically inherited biological forms. More specifically, we are talking about models based on the recurrent harmonic progression whose connection with the information sequences of DNA molecules in the genomes of higher and lower organisms was recently revealed. In particular, the article describes previously unknown connections of the function of natural logarithms with the structures of the molecular genetic system, which allow modelling the main psychophysical logarithmic law by Weber-Fechner and also many other logarithmic structures in genetically inherited biological systems. In physics, the harmonic progression is traditionally considered, first of all, as related to standing waves in resonators. Our results are correlated with Frohlich’s vibration-resonant theory about collective quantum effects and long-range communication in biological systems

    Transient simulation of the last glacial inception. Part I : glacial inception as a bifurcation in the climate system

    Get PDF
    We study the mechanisms of glacial inception by using the Earth system model of intermediate complexity, CLIMBER-2, which encompasses dynamic modules of the atmosphere, ocean, biosphere and ice sheets. Ice-sheet dynamics are described by the three-dimensional polythermal ice-sheet model SICOPOLIS. We have performed transient experiments starting at the Eemiam interglacial, at 126 ky BP (126,000 years before present). The model runs for 26 kyr with time-dependent orbital and CO2 forcings. The model simulates a rapid expansion of the area covered by inland ice in the Northern Hemisphere, predominantly over Northern America, starting at about 117 kyr BP. During the next 7 kyr, the ice volume grows gradually in the model at a rate which corresponds to a change in sea level of 10 m per millennium. We have shown that the simulated glacial inception represents a bifurcation transition in the climate system from an interglacial to a glacial state caused by the strong snow-albedo feedback. This transition occurs when summer insolation at high latitudes of the Northern Hemisphere drops below a threshold value, which is only slightly lower than modern summer insolation. By performing long-term equilibrium runs, we find that for the present-day orbital parameters at least two different equilibrium states of the climate system exist—the glacial and the interglacial; however, for the low summer insolation corresponding to 115 kyr BP, we find only one, glacial, equilibrium state, while for the high summer insolation corresponding to 126 kyr BP only an interglacial state exists in the model

    On the stability of the atmosphere-vegetation system in the Sahara/Sahel region,

    No full text
    Abstract. A conceptual model has been developed for the analysis of atmospherevegetation interaction in subtropical deserts. The model can exhibit multiple stable states in the system' a "desert" equilibrium with low precipitation and absent vegetation and a "green" equilibrium with moderate precipitation and permanent vegetation cover. The conceptual model is applied to interpret the results of two climate-vegetation models' a comprehensive coupled atmosphere-biome model and a simple box model. In both applications, two stable states exist for the western Sahara/Sahel region for the present-day climate, and the only green equilibrium is found for the mid-Holocene climate. The latter agrees well with paleoreconstructions of Sahara/Sahel climate and vegetation. It is shown that for present-day climate the green equilibrium is less probable than the desert equilibrium, and this explains the existence of the Sahara desert as it is today. The difference in albedo between the desert and vegetation cover appears to be the main parameter that controls an existence of multiple stable states. The Charney's mechanism of self-stabilization of subtropical deserts is generalized by accounting for atmospheric hydrology, the heat and moisture exchange at the side boundaries, and taking into account the dynamic properties of the surface. The generalized mechanism explains the self-stabilization of both desert and vegetation in the western Sahara/Sahel region. The role of surface roughness in climate-vegetation interaction is shown to be of secondary importance in comparison with albedo. Furthermore, for the high albedo, precipitation increases with increasing roughness while, for the low albedo, the opposite is found

    Faint young Sun problem more severe due to ice-albedo feedback and higher rotation rate of the early Earth

    No full text
    was up to 25 % less luminous than today, yet there is strong evidence that the Earth’s ocean surface was not completely frozen. The most obvious solutions to this ‘faint young Sun problem ’ demand high concentrations of greenhouse gases such as carbon dioxide. Here we present the first comprehensive 3-dimensional simulations of the Archean climate that include processes as the sea-ice albedo feedback and the higher rotation rate of the Earth. These effects lead to CO2 partial pressures required to prevent the Earth from freezing that are significantly higher than previously thought. For the early Archean, we find a critical CO2 partial pressure of 0.4 bar in contrast to 0.06 bar estimated in previous studies with 1-dimensional radiative-convective models. Our results suggest that currently favored greenhouse solutions could be in conflict with constraints emerging for the middle and lat

    Record Balkan floods of 2014 linked to planetary wave resonance

    Get PDF
    In May 2014, the Balkans were hit by a Vb-type cyclone that brought disastrous flooding and severe damage to Bosnia and Herzegovina, Serbia, and Croatia. Vb cyclones migrate from the Mediterranean, where they absorb warm and moist air, to the north, often causing flooding in central/eastern Europe. Extreme rainfall events are increasing on a global scale, and both thermodynamic and dynamical mechanisms play a role. Where thermodynamic aspects are generally well understood, there is large uncertainty associated with current and future changes in dynamics. We study the climatic and meteorological factors that influenced the catastrophic flooding in the Balkans, where we focus on large-scale circulation. We show that the Vb cyclone was unusually stationary, bringing extreme rainfall for several consecutive days, and that this situation was likely linked to a quasi-stationary circumglobal Rossby wave train. We provide evidence that this quasi-stationary wave was amplified by wave resonance. Statistical analysis of daily spring rainfall over the Balkan region reveals significant upward trends over 1950-2014, especially in the high quantiles relevant for flooding events. These changes cannot be explained by simple thermodynamic arguments, and we thus argue that dynamical processes likely played a role in increasing flood risks over the Balkans
    corecore